Assessment of Proper Bonding Methods and Mechanical Characterization FPGA CQFPs

Milton Davis (NASA/GSFC)

Table of Contents

- Discussion of fractured leads on FPGA during flight vibration
- Actions taken post failure to determine root cause and resolution
 - FEA and vibration testing
 - SEM/EDS failure assessment
- Assessing bonding methods for surface mount parts
 - Critical analysis properties obtained
 - Assessment of random fatigue damage
- Conclusion
 - Summary of findings
 - Possible future work

CQFP Lead Fracture

- After disassembling the ACE configuration, photographs showed six leads cracked on FPGA RTSX72SU-1 CQ208B package located on the RWIC card
- An identical package (FPGA RTSX32SU-1 CQ208B) mounted on the RWIC did not result in cracked pins due to vibration.
- The ETU was successfully qualified to through thermal and vibration test at qualification levels (14.1 GRMS, 2 min per axis, while the flight was taken to proto-flight levels (10 GRMS, 1 min per axis).

CQFP Lead Fracture

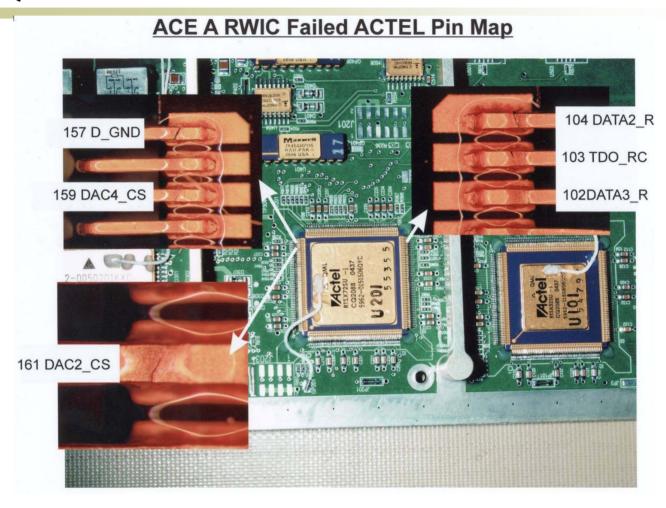
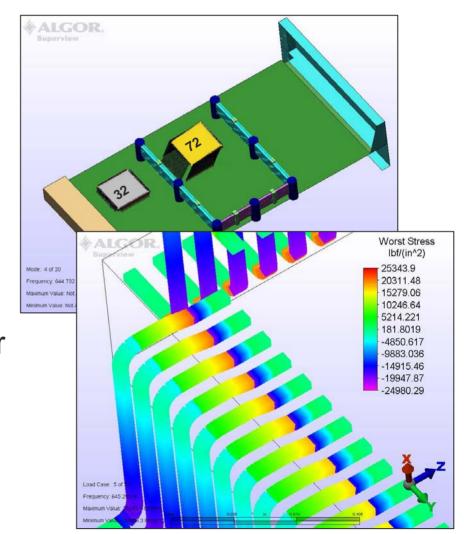


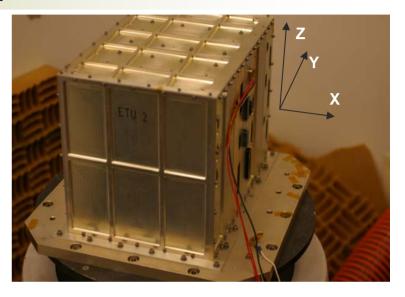
Figure - Six cracked leads on ACTEL FPGA 72SU CQFP during last axis of flight vibration

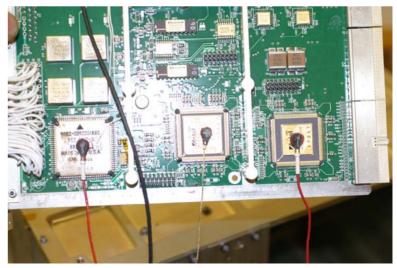
FPGA Lead Failure Theories


- Workmanship issue in the lead-forming on this part or how the component was soldered to the board
- 2. Material defect in the leads of the FPGA packages
- Board was not mounted securely in the card guides, which may have been a result of slippage or de-metallization on card guide (wedge-tainer) engagement surface
- 4. A filler was not mixed with the staking material to add the proper stiffness to the corners of the component
- 5. Shaker table controller was inputting higher loads than the desired test profile
- 6. ETU qualified design was not fully implemented in the Flight build
 - ETU build of the RWIC had a thermal compound (Nusil CV 2942) placed underneath both of the 32SU and 72SU packages
- 7. Natural frequency of the PCB was very close to that of the chassis causing amplification response acceleration G level

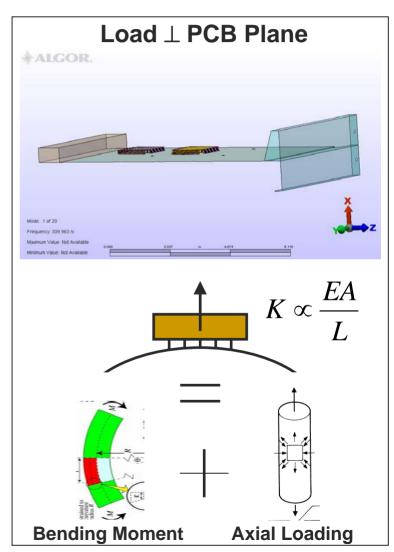
Actions Taken Post-Failure

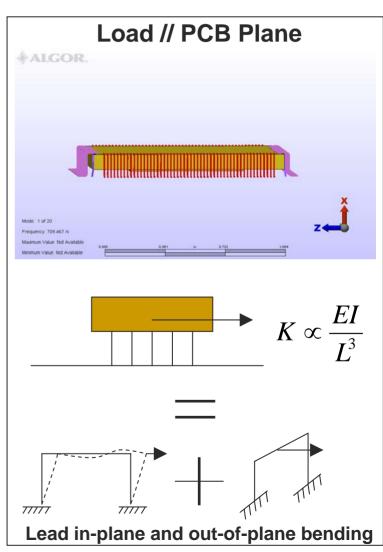
- Re-produce failure to evaluate theories related to workmanship, clamping force of PCB, component selection and design deviation
 - FEA performed to characterize the component's mechanical behavior when subjected to various bonding methodologies
 - Testing performed to validate the FEA modeling and aid in deciding the proper solution
- Assess root cause
 - Scanning electron microscopy (with X-ray microanalysis) and energy dispersive spectrometry (SEM/EDS)
 - Fault-tree Analysis


FEM Analysis

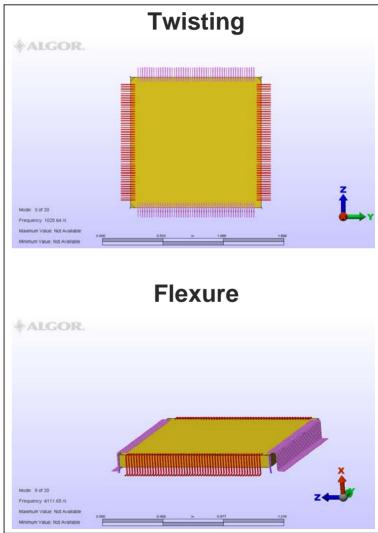

- Model built with composite plates, solids, and beams
- Modal and random vibe analysis performed prior to testing:
 - Characterize
 mechanical behavior
 (f_N, σ_{Lead} vs σ_{Ult} &
 σ_{Fatigue})
- Results correlate with test results

Test Setup and Inputs


- Sine sweep test: ¼ g from 20 to 2400 Hz at 4 octs/min on Z and Y (// and ⊥ to PCB respectively)
- Accelerometers placed on board, chassis and parts to monitor results with varying bond methods
 - No interstitial material
 - Mimicking the flight build only a corner bond (Arathane 5753)
 - Only an under-fill (Nusil CV-2942)
 - Only a corner bond (Epoxy 2216)
 - Mimicking the qualified build under-fill and corner bond (Arathane 5753 or Epoxy 2216 Gray)


Component Response Due to Out-of-plane Loading (Axial)

		Frequency	Response [H	z] as Function of E	Bonding				
Component	Assessment	No	Uralane	Nusil CV-2942	Epoxy 2216 Corner Bond				
Response	Method	Bonding	Corner-bond	Under-fill					
თ	Board Flexure								
Axial & Bending	Test Results	348							
(xig	FEA Assembly	340	340	340	347				
A B	Hand Calcs			325					
		72SL	J Motion						
0	Test Results	631							
Rocking	FEA Assembly	645	707	2821	3247				
00	Hand Calcs	667	726	2539	3706				
	FEA Component	648	709	2838	3828				
ng	Test Results	~880							
Twisting	FEA Assembly	905	1022	1913.6					
<i>≶</i> ⊢	FEA Component	908	1026	1926.19	6350				
		32SL	J Motion						
0	Test Results	1003							
Rocking	FEA Assembly	948	1074	3340	>3247				
00	Hand Calcs	1106	1170	3368	4965				
<u>~</u>	FEA Component	952	1079	3431					
ng	Test Results	~1350							
Twisting	FEA Assembly	1339	1565	2435	>3247				
<i>≶</i> ⊢	FEA Component	1344	1573	2443	6555				


Component Response Due to Inplane Loading (Rocking)

	Frequency Response [Hz] as Function of Bonding								
		No	Uralane	Nusil CV-2942	Epoxy 2216 Corner Bond				
		Bonding	Corner-bond	Under-fill					
.× D	Board Flexure								
Axial & Bending	Test Results	348							
Λχi sen	FEA Assembly	340	340	340	347				
- Ш	Hand Calcs			325					
	-	72SL	J Motion						
ರಾ	Test Results	631							
ž.	FEA Assembly	645	707	2821	3247				
Rocking	Hand Calcs	667	726	2539	3706				
	FEA Componen	648	709	2838	3828				
ng	Test Results	~880							
Twisting	FEA Assembly	905	1022	1913.6					
<i>≶</i> ⊢	FEA Component	908	1026	1935	6350				
		32SL	J Motion	-					
<u>ත</u>	Test Results	1003							
Rocking	FEA Assembly	948	1074	3340	>3247				
0	Hand Calcs	1106	1170	3368	4965				
8	FEA Componen	952	1079	3436					
ng	Test Results	~1350							
Twisting	FEA Assembly	1339	1565	2435	>3247				
≫	FEA Component	1344	1573	2443	6555				

Component Response Due to Inplane Loading (Twisting)

	Frequency Response [Hz] as Function of Bonding								
Component	Assessment	No	Uralane	Nusil CV-2942	Epoxy 2216				
Response	Method	Bonding	Corner-bond	Under-fill	Corner Bond				
ox 0	Board Flexure								
Axial & Bending	Test Results	348							
4 x i	FEA Assembly	340	340	340	347				
- B	Hand Calcs			325					
		72SL	J Motion						
0	Test Results	631							
Rocking	FEA Assembly	645	707	2821	3247				
00	Hand Calcs	667	726	2539	3706				
	FEA Component	648	709	2838	3828				
ing	Test Results	~880							
Twisting	FEA Assembly	905	1022	1913.6					
× –	FEA Componen	908	1026	1935	6350				
		32SL	J Motion						
D D	Test Results	1003							
Rocking	FEA Assembly	948	1074	3340	>3247				
00	Hand Calcs	1106	1170	3368	4965				
	FEA Component	952	1079	3436					
ing	Test Results	~1350							
Twisting	FEA Assembly	1339	1565	2435	>3247				
Ě	FEA Componen	1344	1573	2443	6555				

SEM/EDS Failure Assessment

Results indicated Assessment

- No material defects in pin
- Pins fractured due to stress exceeding stress limitation
- Material analysis conveyed grain size of material is between 50 and 80 micrometers
- Location of fractured pins correlates well with location of highest stress from FEA

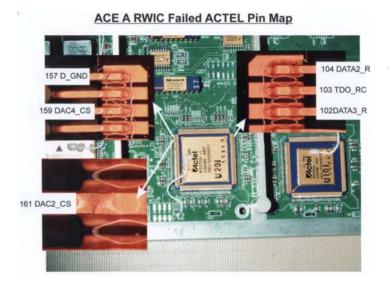
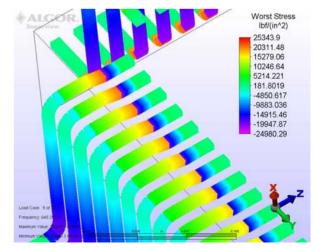



Figure - Mapping of the failed pins

Figure - Stress results from FEA due to loading // to PCB plane

Findings from Studies Conducted

- Lead Workmanship Ruled out by inspection at several test points
- Lead Material Defect Ruled out by SEM/EDS inspection of leads
- Board Mounting Ruled out by verification of card-guide clamp force
- Staking Workmanship Materials assessment indicates the Cab-O-Sil filler content in the Uralane was 7% instead of the recommended 14% (less filler means less support)
- Shaker Table Loads Ruled out by examination of test control accel responses
- Design Deviation Verified that the ETU build has Nusil CV-2942 as an under-fill with Uralane staking in the corners of the FPGA packages
- PCB/Component Amplification Possible that chassis, PCB and components could have resonance coupling
- 72SU 2X heavier and leads 1.2 X longer than 32SU package

Assessment of Bonding Methods

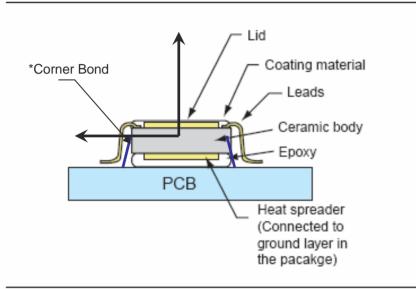
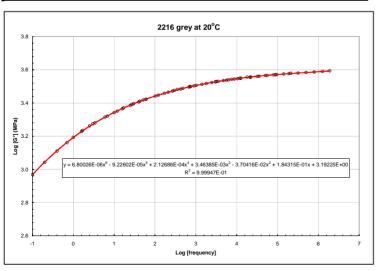


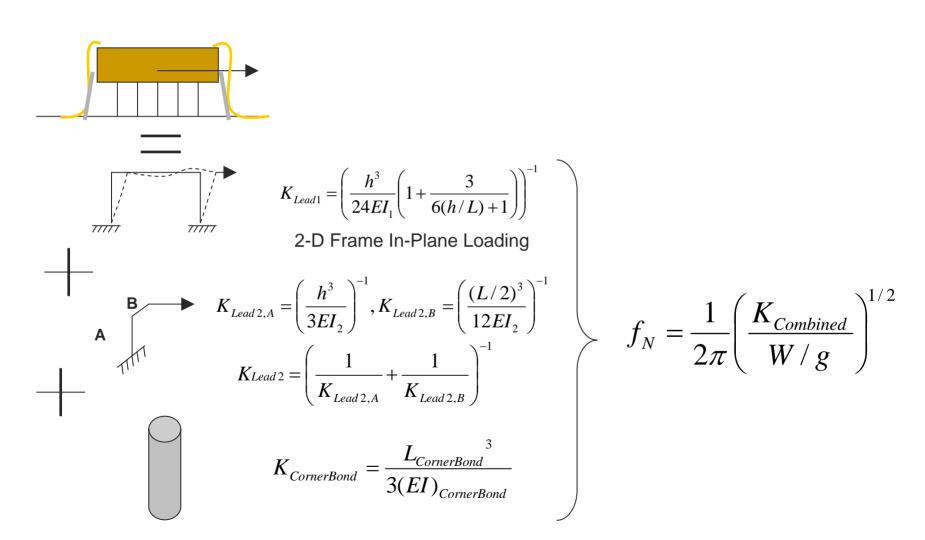
Figure 8 • Top Coating and Bottom Epoxy on CQ Package with Heat Sink on the Bottom


- ACTEL suggests following for CQ256 and CQ352:
 - No suggestion for material types
 - A non [electrically]
 conductive epoxy/glue
 applied between board
 and component base
 post solder to absorb
 energy during vibration
 - **Top (UV) cure for high stresses in braze area

^{*} There is no suggestion from ACTEL about bonding from the corner to the PCB

^{**} UV cure materials not approved for flight

Critical Mechanical Properties E, ζ , & σ_{Limit}


E as function of f _N for adhesives from DMA									
Material	1 Hz	640 Hz	1000 Hz	2000 Hz					
Nusil									
CV2942	30.6	40	40.8	42.1					
5753									
(14%									
Cabosil)	10.1	19.3	20.1	21.4					
2216									
Grey	1557	3125	3200	3308					

Comparison of Damping Ratios for 72SU Part							
	Fn (Hz)	Damping Ratio	Error Factor				
Single DOF							
Beam Bending	645	0.010	0.921				
Single DOF							
PCB Motion	341	0.027	2.534				
Typical Project							
Recommended	n/a	0.020	1.872				
Half-Power'							
Test Data	631	0.011	1.000				

Fatigue Limit of Kovar as Function of R, Grain Size and K								
Stress Ratio	Grain		K, Stress	σ	σ			
R	Size	b	Concentration	(Ultimate)	(Fatigue Limit)			
				65ksi @ 10 ⁴	40ksi @ 10 ⁷			
0.1(notched)	14 μm		1	cycles to failure	cycles to failure			
				49ksi @ 10 ⁴	30ksi @ 10 ⁷			
-1	65 _μ m	13.9	1	cycles to failure	cycles to failure			
				49ksi @ 10 ⁴ 15ksi @				
				cycles to	cycles to			
-1	65 μm	5.8	2	failure	failure			
				29ksi @ 10 ⁴	13ksi @ 10 ⁷			
0.1	65 μm		1	cycles to failure	cycles to failure			
0.1(notched)				20ksi @ 10 ⁴	6ksi @ 10 ⁷			
Kt = 6.8	14 μm		1	cycles to failure	cycles to failure			
*unknown				59ksi @ 10 ⁴	14ksi @ 10 ³			
notched	n/a	6.4	2	cycles to failure	cycles to failure			

Simple Calculations for Stiffness and F_N

Response and Fatigue Results

Attachment Method	E	f _N	Stress Results (Load // PCB)		Cumulative Damage (R _N) K=2, σ _L =96MPa		Cumulative Damage (R _N) K=2.5, σ _L =77MPa	
			FEA Hand Calc					
	[MPa]	[Hz]	[MPa]	[MPa]	FEA	Hand Calc	FEA	Hand Calc
72SU (No Bonding)		648	131	149	0.773	0.973	1.159	0.973
7% filled Uralane CB	19.3	707	114	141	0.918	0.749	1.321	0.749
Nusil CV-2942 UF	40	2821	42	62	0.000	0.013	0.001	0.013
Epoxy 2216 CB	3125	3706	3	48	0.000	0.003	0.000	0.003
32SU (No Bonding		952	63	77	0.143	0.023	0.239	0.023
7% filled Uralane CB	19.3	1079	73	74	0.020	0.019	0.046	0.019
Nusil CV-2942 UF	40	3368	4	35	0.000	0.000	0.000	0.000
Epoxy 2216 CB	3125	4965	2	27	0.000	0.000	0.000	0.000

Summary of Results

- Simple calculations derived to calculate the response and fatigue life of the package fairly accurately
- Shorter packages exhibit more response when loaded by out-ofplane displacement of PCB while taller packages exhibit more response when loaded by in-plane acceleration of PCB
- Increasing stiffness of component (via high modulus bonding material) drives the frequency and resultant stress out of launch load region (simulated by GEVS vibration profile)
- Under-fill does not contribute to reducing stress in leads due to outof-plane PCB loading
- Under-fill does not reduce stress from twisting of component as much as corner bonding
- Combination of corner bond and under-fill is best to address mechanical and thermal S/C environment
- Test results of bonded parts showed reduced (dampened) amplitude and slightly shifted peaks at the un-bonded natural frequency and an additional response at the bonded frequency
- Stress due to PCB out-of-plane loading was decreased only in the corners when only a corner bond was used

Possible Future Work

CQFP Fatigue Assessment

- Investigate discrepancy in fatigue damage predicted
 - Assess if adding epoxy to the lid (brazing area) is effective for spreading load
 - Quantify and add effect of high stress in brazing area via stress concentration factor or adding pre-load/pre-stress to calculations and analysis
 - Incorporate effects of the responses due to multiple degrees of freedom and amplification due to resonance coupling
 - Add cumulative damage due to sinusoidal vibration, sine-burst and thermal loading
 - Vibrate parts to failure
- Compare fatigue life and fatigue damage cycle ratio computed using FEA and Miner's rule to results from a fatigue assessment software program

Other work

 Thermal and Mechanical Fatigue of Six Sigma packaged ACTEL CCGAs Due to S/C Environment Loading

Contributors

 Milton Davis (Author, Analysis, Test Conductor) - <u>Milton.c.davis@nasa.gov</u>, (work) 301-286-2314

Special thanks to:

- Charles Clagett (Co-Test Conductor)/NASA GSFC/Components and Hardware Systems Branch (596) Branch Head
- Dr. Charles He of Ball Aerospace Supporting GSFC (DMA Analysis)/Materials Engineering Branch (541)
- Joel Gambino/NASA GSFC/Components and Hardware Systems Branch (596) Product Development Lead
- Joseph Roman (Co-Test Conductor)/NASA GSFC/Components and Hardware Systems Branch (596) Lead Electronics Technician
- Dr. Len Wang of Swales GSFC (SEM/EDS Assessment)/Materials Engineering Branch (541)

Citations

- Cook, Robert D. <u>Concepts and Applications of Finite</u>
 <u>Element Analysis</u>. 4th Edition. University of Wisconsin –
 Madison, 2002. Stanford University, 2001.
- Gere, James M. <u>Mechanics of Materials</u>. 5th Edition
- Harris, M. Cyril. <u>Shock and Vibration Handbook</u>. 3rd Ed. Columbia University P, 1988.
- Harper, Charles A. <u>Electronics Packaging and</u>
 <u>Interconnection Handbook</u>. 4th Edition. McGraw Hill, 2005
- Steinberg, Dave S. <u>Vibration Analysis for Electronic</u>
 <u>Equipment</u>. 3rd Ed. Los Angeles: University of California P, 2000
- Wasynczuk, James A., Hanna, W. D., Ross, Franklin D. R., and Freitag, Thomas A. 'High-Cycle Fatigue of Kovar.' Fatigue of Electronic Materials - ASTM STP 1153, 1994
- Young, Warren C. and Budynas, Richard G. Roark's
 Formulas for Stress and Strain.
 7th Ed. McGraw-Hill, 2002.

Acronyms & Abbreviations

Acronyms

- ACE Attitude Control Electronics
- CAD Computer Aided Drafting
- CCGA Ceramic Column Grid Array
- CFD Computational Fluid Dynamics
- CQFP Ceramic Quad Flat Pack
- DOF Degree of Freedom
- DMA Dynamic Mechanical Test
- FEA Finite Element Analysis
- GEVS General Environment Verification Specification
- RWIC Reaction Wheel Interface Card
- S/C Spacecraft
- SEM/EDS Scanning electron microscopy (with X-ray microanalysis) and energy dispersive spectrometry
- SDO Solar Dynamics Observatory

Abbreviations

- // parallel
- ⊥ perpendicular
- CB Corner Bond
- ζ Damping Ratio
- E Modulus of Elasticity
- f^N Natural frequency
- G, g acceleration
- K Stress Concentration
- N Cycles to Failure
- Q Transmissibility
- R Stress Ratio
- R_N Cumulative Fatigue Damage
- σ Stress
 - \circ σ_{ULT} Ultimate Stress
 - \circ σ_{Y} Ultimate Stress
- UF Under-fill